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Abstract

Dynamical models estimate and predict the temporal evolution of physical systems. State
space systems, a fundamental framework in control theory and system dynamics, provide a
powerful mathematical representation for capturing the evolving states of such dynamical
systems over time. Data driven techniques e.g. Recurrent Neural Networks have emerged
as compelling approaches to model these state space parameters with wide success across
a number of challenging tasks, in part due to their impressive capability to extract time-
varying features from inputs. They however lack interpretability and training them has
historically been very difficult. This master thesis implements a novel network architecture
named Dynamic Neural Networks (DNNs), first proposed in [1], whose key idea is to solve a
system of ordinary differential equations to compute the states of neurons. Leveraging the
dynamic characteristics of these blocks, DNNs are specifically designed for tasks related to
sequence modeling and system identification. The backpropagation behavior of the linear
dynamical operator is defined w.r.t. both its parameters and input sequence, which facilitates
comprehensive end-to-end training of these networks. We will test our model on illustrative
examples to demonstrate the efficacy of the proposed methodology. The mapping from the
system matrices to the parameters of the DNN also eliminates the need for neural architecture
search. We also do a rigorous study of the loss landscape and incorporate our findings into
the learning paradigm.

iv



Kurzfassung

Dynamische Modelle schätzen und prognostizieren die zeitliche Entwicklung physikalischer
Systeme. Zustandsraumsysteme, ein grundlegender Rahmen in Kontrolltheorie und -system
Dynamik bieten eine leistungsstarke mathematische Darstellung zur Erfassung der sich
entwickelnden Zustände solcher dynamischer Systeme im Laufe der Zeit. Datengesteuer-
te Techniken, z.B. Rekurrente neuronale Netze haben sich als überzeugende Ansätze zur
Modellierung dieser Zustandsraumparameter mit großem Erfolg bei einer Reihe anspruchs-
voller Aufgaben herausgestellt, unter anderem aufgrund ihrer beeindruckenden Fähigkeit,
zeitlich variierende Merkmale aus Eingaben zu extrahieren. Allerdings mangelt es ihnen an
Interpretierbarkeit, und ihre Ausbildung war in der Vergangenheit sehr schwierig. Diese
Masterarbeit implementiert eine neuartige Netzwerkarchitektur namens Dynamic Neural Net-
works (DNNs), die erstmals in [1] vorgeschlagen wurde und deren Schlüsselidee darin besteht,
ein System gewöhnlicher Differentialgleichungen zu lösen, um die Zustände von Neuronen
zu berechnen. DNNs nutzen die dynamischen Eigenschaften dieser Blöcke und sind speziell
für Aufgaben im Zusammenhang mit der Sequenzmodellierung und Systemidentifikation
konzipiert. Das Backpropagation-Verhalten des linearen dynamischen Operators ist bzgl. so-
wohl der Parameter als auch der Eingabesequenz, was ein umfassendes End-to-End-Training
dieser Netzwerke ermöglicht. Wir werden unser Modell anhand anschaulicher Beispiele
testen, um die Wirksamkeit der vorgeschlagenen Methodik zu demonstrieren. Durch die
Zuordnung von den Systemmatrizen zu den Parametern des DNN entfällt auch die Notwen-
digkeit einer neuronalen Architektursuche. Wir führen auch eine gründliche Untersuchung
der Verlustlandschaft durch und integrieren unsere Erkenntnisse in das Lernparadigma.
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1. Introduction

1.1. Motivation, Literature Survey and Goals

State space modeling has been a cornerstone in understanding and representing the dynamics
of complex systems. Accurate parameter estimation is pivotal for effective model perfor-
mance. Traditionally, methods like Maximum Likelihood Estimation (MLE) and Bayesian
approaches have been employed. However, recent years have witnessed a paradigm shift
with the integration of theoretically-informed Artificial Neural Networks (ANNs) into the
parameter estimation process. In this section, we will discuss a comprehensive overview of
this integration, exploring its historical evolution, methodologies, applications, challenges,
and future directions.

The history of parameter estimation for state space models dates back to the mid-20th
century with the introduction of the Kalman filter by Rudolf E. Kalman [2]. While the Kalman
filter addressed the state estimation problem, accurate parameter estimation remained a
challenge. Subsequent developments included Maximum Likelihood Estimation (MLE) and
Bayesian approaches [3]. These methods laid the foundation for accurate parameter estimation,
but their applicability faced limitations in handling non-linearities and high-dimensional data.

The advent of Artifical Neural Networks marked a significant departure from traditional
approaches, offering a powerful tool to capture complex and non-linear relationships within
dynamical systems. Early works by Chen and Billings (1990) demonstrated the potential of
neural networks, specifically feedforward networks, in capturing non-linear system dynamics
[4]. The ability of deep learning models to automatically extract hierarchical features from
raw data makes them particularly suitable for capturing the complex dynamics of real-world
systems. Brunton et al. (2016) demonstrated the utility of neural networks in discovering gov-
erning equations from fluid flow data, showcasing the broad applicability of these techniques
in understanding complex systems [5].

However, it became evident that the temporal dependencies inherent in many dynamic sys-
tems necessitated the use of recurrent neural networks (RNNs) and long short-term memory
networks (LSTMs) [6]. Although these networks provided a more sophisticated means of mod-
eling system dynamics, they suffered from the typical problems of vanishing and exploding
gradients and just general difficulties in the training paradigm. A Recurrent Neural Network
(RNN) can be considered as a network of Multi-layered Perceptrons (MLPs) enhanced by
feedback connections. RNNs are considered a cornerstone in the learning theory because of
their abilities to reproduce dynamical behaviors by mean of feedback connections and delays
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1. Introduction

in the propagation of their signals [7]. After learning, a RNN with a sufficient number of
neurons is able to estimate any relationships and therefore to reproduce the behavior of any
multivariate and nonlinear dynamical systems (Werbos, 1974). Therefore, RNNs received
a considerable attention from the modern control community to such an extend that they
have been formalized in Model-Referencing Adaptive Control (MRAC) schemes. Their model
stability remains one of the most critical aspects.

Peter Meijer developed NEUREKA [1]. - an application that uses DNNs for simulating
electrical circuits by their respective reduced-order models. They propose a methodology
for constructing efficient models for nonlinear, multi-dimensional, dynamical systems, given
input-output data. However, in the proposed methodology, unavailability of the topology
of the DNNs beforehand makes the architecture search very computationally expensive.
Moreover, local minima are found during the optimization of the parameters.

Prof. Wil Schilders’ work [8]. tackles these drawbacks for linear systems. They first
apply state-space modelling MOESP algorithm [5], [6] for identifying a reduced-order Linear
Time-Invariant (LTI) system from input-output data. Starting from this state-space model,
they find a mapping from the state-space matrices to the parameters i.e. the number of
neurons and hidden layers in DNNs, thereby eliminating the need for architecture search.
Based on this mapping, they also propose a strategy to initialise weights of DNNs to ensure a
good initial guess. However, the Bartels-Stewart algorithm used in this mapping requires the
state matrix’s eigenvalues to have an algebraic multiplicity equal to one.

In our work, we implement the ideas developed in [8]. and propose a way to relax this
algebraic multiplicity constraint. Given any LTI system describing the underlying dynamics
(either obtained from input-output data using a subspace identification algorithm like MOESP
or a known mathematical model), we will determine the number of layers and neurons in
each layer of the DNN. We will also try to deduce how these neurons are connected to each
other based on the structure of the state space matrices. Lastly, we will come up with a
strategy to initialise the weights of the DNN using the domain knowledge in the form of
the reduced state-space model. The goal of this thesis is to implement and study how one
can train the dynamic neural networks using reverse-mode differentiation and to test the
implementation on some numerical examples.

1.2. Thesis Organization

The thesis is structured as follows. Chapter 2 highlights the theoretical background on
dynamical systems. We will start with an historical overview of dynamical systems before
deep diving into the mathematics of State Space modelling. We will then briefly study Linear
Time-Invariant Systems. In Chapter 3, we introduce the concept of a Dynamical Neural
Network (DNN). We talk about their formalism, intuition behind the architecture, math
required to go from the state space matrices to the parameters of the DNN. We then talk

2



1. Introduction

about the training paradigm: the Forward Pass and the Backpropagation. We also visualize
the loss landscape. In Chapter 4, we analyse the results and list our findings. In Chapter 5,
we conclude our work with some remarks and talk about the possible next steps.

3



2. Background

2.1. Overview of Dynamical Systems

The exploration of dynamical systems as a mathematical discipline can be traced back to the
late nineteenth century, notably with Henri Poincaré’s contributions to celestial mechanics
[9]. Poincaré’s work focused on formulating equations to describe the movements of planets
within a gravitational field, seeking solutions to predict their positions over time. When the
complexity or impossibility of finding explicit solutions arises, attention shifts to studying the
mathematical structure of the model. This approach, emphasizing understanding the nature
and structure of equations for insights into possible solution functions, forms the foundation
of what we now recognize as dynamical systems theory.

The concept of dynamical systems, though relatively new, encompasses a broad scope,
extending beyond a mere subdiscipline of real analysis. While it primarily investigates the
properties of functions with a single real independent variable, dynamical systems draw theo-
retical and methodological influences from diverse mathematical domains, including analysis,
geometry, topology, and algebra. These interconnected influences place dynamical systems
within the realm of second-generation mathematics, acting as bridges between various pure
areas of mathematical study. In its essence, dynamical systems serve as a comprehensive
study of phenomena modeled through functions and equations, evolving over time. Defining
this concept precisely requires acknowledging its generality, even if the initial definition may
seem broad and less immediately informative.

So, as a means to define this concept more precisely, we begin with arguably a most general
and yet least helpful statement:

A dynamical system is a mathematical formalization for any fixed rule that describes the
dependence of the position of a point in some ambient space on a parameter. [10]

The parameter here, usually referred to as “time” due to its reference to applications in the
sciences, takes values in the real numbers. Usually, these values come in two varieties:

(1) discrete (think of the natural numbers N or the integers Z), or
(2) continuous (defined by some single interval in R).

The parameter can sometimes take values in much more general spaces, for instance,
subsets of C,R, the quaternions, or indeed any set with the structure of an algebraic group.
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2. Background

The ambient space exhibits a "state" characterized by marked positions of all its points that
vary with the parameter. Each point possesses a relative position to others, often defined
by a complete set of generalized coordinates providing a well-defined notion of position.
The term "generalized" originates from classical mechanics, referring to coordinates defining
configurations relative to a reference. By fixing the coordinate system and allowing parameter
variation, a functional relationship arises between points at different parameter values. This
concept involves the notion of topology, providing a mathematical property of space, defining
nearness among set elements, and enabling functions on the set to possess properties like
continuity and differentiability. Referred to as the state space, it encompasses all potential
states a dynamical system can inhabit at any given time.

The governing rule, typically a guideline for transitioning between states in the specified
parameter order, is often presented as a function in discrete dynamical systems. This function,
mapping the state space to itself, moves each point to its subsequent state through iteration.
Past states may be determined by applying the inverse of the function or selecting an element
from the set that the function maps to the current state. Continuous systems, posing chal-
lenges in defining a successor to a parameter value, employ Ordinary Differential Equations
(ODEs) to describe the continuous movement of points in a space [11]. In continuous systems,
the ODE plays a role equivalent to the function in discrete systems, implicitly defining the
method of transitioning from one state to the next, albeit in an infinitesimal manner. The
solution to an ODE (or system of ODEs) is a function whose domain includes points from
both the state and parameter space (sometimes termed the trajectory space), returning values
to the state space. This function, often called the system’s evolution, facilitates the transition
from any initial state to another state reachable via a parameter value. While the existence
of such a function can be demonstrated, and its properties studied, it is seldom known
beforehand or even ascertainable afterward.

Before embarking on a more systematic exploration of dynamical systems, here is another
less rigorous definition of a dynamical system: Dynamical Systems as a field of study attempts
to understand the structure of a changing mathematical system by identifying and analyzing
the things that do not change.

There are many ways to identify and classify this notion of an unchanging quantity amidst
a changing system. But the general idea is that if a quantity within a system does not
change while the system as a whole is evolving, then that quantity holds a special status as a
symmetry. Identifying symmetries can allow one to possibly locate and identify solutions
to an ODE. Or one can use a symmetry to create a new system, simpler than the previous,
where the symmetry has been factored out, reducing either the number of variables and/or
the size of the system. The general goal of an analysis of a dynamical system is typically
not to solve the system or to find an explicit expression for its evolution. Many nonlinear
systems of ODEs are difficult, if not impossible, to solve. Rather, the goal of an analysis of a
dynamical system is a general description of the movement of points under the map or the

5



2. Background

ODE. Perhaps the best way to end this section is on a more philosophical note, and allow a
possible raison d’etre for why Dynamical Systems even exists as a field of study enmeshed in
the world of analysis, topology, and geometry: It is the study of the information contained in
and the effects of groups of transformations of a space [10].

2.2. Examples of Dynamical Systems

Celestial Dynamics:
The motion of celestial bodies in space is governed by dynamical systems. Kepler’s laws

and Newton’s law of gravitation describe the orbits of planets around the sun and the motion
of moons around planets. These systems involve complex interactions and gravitational forces
that contribute to the stability of our solar system.

Climate Systems:
Climate models utilize dynamical systems to simulate and predict atmospheric and oceanic

behavior. The Navier-Stokes equations govern fluid dynamics in the Earth’s atmosphere
and oceans, and these models help researchers understand climate patterns, predict weather
events, and study long-term climate change.

Epidemiology:
The spread of infectious diseases within a population can be modeled using dynamical

systems. Epidemiological models, such as the SIR (Susceptible-Infectious-Removed) model,
help predict the progression of diseases like influenza or COVID-19. These models consider
factors such as transmission rates and recovery rates.

Traffic Flow:
The movement of vehicles on roads and highways is a complex dynamical system. Traffic

flow models, such as the Lighthill-Whitham-Richards model, help urban planners and engi-
neers optimize traffic signal timings and manage congestion. Understanding traffic dynamics
is essential for efficient transportation systems.

Biological Systems:
Biological systems, from cellular processes to ecosystems, involve intricate dynamical

interactions. Cellular signaling pathways, gene regulatory networks, and ecological systems
can be modeled using dynamical systems to understand how populations of species evolve
over time or how cells respond to external stimuli.

Financial Markets:
Financial markets are dynamic and unpredictable, making them ideal candidates for dy-

namical systems analysis. Stock prices, market indices, and economic indicators can be
modeled to understand trends, forecast market movements, and develop trading strategies.
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2. Background

Chaos theory is often applied to study the seemingly random behavior of financial markets.

Aerospace Engineering:
The design and control of aircraft and spacecraft rely on dynamical systems theory. Flight

dynamics models describe the motion of aircraft through the air, and spacecraft trajectories
are governed by celestial mechanics. Control systems play a vital role in ensuring stable and
precise movements.

Robotics: The motion planning and control of robotic systems involve dynamical systems.
Robot dynamics models consider factors such as joint angles, velocities, and external forces
to achieve accurate and efficient movements. This is crucial in applications ranging from
manufacturing to healthcare.

Electrical Circuits:
Electrical circuits are classic examples of dynamical systems. They involve the flow of

electric current through components such as resistors, capacitors, and inductors. The behavior
of these circuits is governed by differential equations that describe how voltages and currents
change over time. For instance, the simple RC circuit involves a resistor (R) and capacitor (C)
and exhibits time-dependent behavior in response to input signals.

2.3. History of Dynamical Systems Theory

Many people regard French mathematician Henri Poincaré as the founder of dynamical
systems [12]. Poincaré published two now classical monographs, "New Methods of Celestial
Mechanics" (1892–1899) and "Lectures on Celestial Mechanics" (1905–1910). In them, he
successfully applied the results of their research to the problem of the motion of three bodies
and studied in detail the behavior of solutions (frequency, stability, asymptotic, and so on).
These papers included the Poincaré recurrence theorem, which states that certain systems
will, after a sufficiently long but finite time, return to a state very close to the initial state.

Aleksandr Lyapunov developed many important approximation methods. His methods
[13], which he developed in 1899, make it possible to define the stability of sets of ordinary
differential equations. He created the modern theory of the stability of a dynamical system.

In 1913, George David Birkhoff proved Poincaré’s "Last Geometric Theorem", a special case
of the three-body problem, a result [14] that made him world-famous. Birkhoff’s most durable
result has been his 1931 discovery of what is now called the ergodic theorem. Combining
insights from physics on the ergodic hypothesis with measure theory, this theorem solved, at
least in principle, a fundamental problem of statistical mechanics. The ergodic theorem has
also had repercussions for dynamics.

7



2. Background

Time G (semigroup) Actions
Natural numbers (N,+) Maps
Integers (Z,+) Invertible Maps
Positive real numbers (R+,+) Semiflows (some PDEs)
Real numbers (R,+) Flows (Differential equations)
Any group (G, ⋆) Representations
Lattice (Zn,+) Lattice gases, Spin systems
Euclidean space (Rn,+) Tiling dynamical systems
Free group (Fn, ◦) Iterated function systems

Table 2.1.: Classes of Dynamical Systems

Stephen Smale made significant advances as well. His first contribution was the Smale
horseshoe [15] that jumpstarted significant research in dynamical systems. He also outlined a
research program carried out by many others.

Oleksandr Mykolaiovych Sharkovsky developed Sharkovsky’s theorem [16] on the periods
of discrete dynamical systems in 1964. One of the implications of the theorem is that if a
discrete dynamical system on the real line has a periodic point of period 3, then it must have
periodic points of every other period.

In the late 20th century the dynamical system perspective to partial differential equations
started gaining popularity. Palestinian mechanical engineer Ali H. Nayfeh applied nonlinear
dynamics in mechanical and engineering systems [17]. His pioneering work in applied
nonlinear dynamics has been influential in the construction and maintenance of machines and
structures that are common in daily life, such as ships, cranes, bridges, buildings, skyscrapers,
jet engines, rocket engines, aircraft and spacecraft.

2.4. State Space Representation

Mathematically, a dynamical system consists of a phase (or state) space P and a family of
transformations ϕt : P −→ P, where the time t may be either discrete, t ∈ Z, or continuous,
t ∈ R [18]. For arbitrary states x ∈ P the following must hold:

1. ϕ0(x) = x (identity)
2. ϕt(ϕs(x)) = ϕt+s(x) ∀t, s ∈ R (additivity)

A dynamical system may be understood as a mathematical prescription for evolving the
state of a system in time [19]. Additivity ensures that the transformations ϕ(t) form an
Abelian group.

8



2. Background

In other words, any semigroup G acting on a set is a dynamical system. A semigroup
(G, ⋆) is a set G on which we can add two elements together and where the associativity
law (x ⋆ y) ⋆ z = x ⋆ (y ⋆ z) holds. The action is defined by a collection of maps Tt on X. It
is assumed that Tt⋆s = Tt ◦ Ts, where ⋆ is the operation on G (usually addition) and ◦ is the
composition of maps. In the table 2.1, we can see the different classes of dynamical systems.

In control engineering and system identification, a state-space representation is a mathe-
matical model of a physical system specified as a set of input, output and variables related by
first-order (not involving second derivatives) differential equations or difference equations.
Such variables, called state variables, evolve over time in a way that depends on the values
they have at any given instant and on the externally imposed values of input variables.
Output variables’ values depend on the values of the state variables and may also depend on
the values of the input variables.

The state space or phase space is the geometric space in which the variables on the axes are
the state variables. The state of the system can be represented as a vector, the state vector,
within state space.

If the dynamical system is linear, time-invariant, and finite-dimensional, then the differen-
tial and algebraic equations may be written in matrix form [20]. The state-space method is
characterized by significant algebraization of general system theory, which makes it possible
to use Kronecker vector-matrix structures. The capacity of these structures can be efficiently
applied to research systems with modulation or without it [21]. The state-space representation
(also known as the "time-domain approach") provides a convenient and compact way to
model and analyze systems with multiple inputs and outputs. With p inputs and q outputs,
we would otherwise have to write down q × p Laplace transforms to encode all the infor-
mation about a system. Unlike the frequency domain approach, the use of the state-space
representation is not limited to systems with linear components and zero initial conditions.

2.5. Linear Time-invariant Systems

Linear time-invariant systems (LTI systems) are a class of systems that are both linear and
time-invariant. Linear systems are systems whose outputs for a linear combination of inputs
are the same as a linear combination of individual responses to those inputs. Time-invariant
systems are systems where the output does not depend on when an input was applied. The
constraints of linearity and time-invariance; these terms are briefly defined below:

Linearity means that the relationship between the input x(t) and the output y(t), both
being regarded as functions, is a linear mapping: If a is a constant then the system output
to ax(t) is ay(t); if x′(t) is a further input with system output y′(t) then the output of the
system to x(t) + x′(t) is y(t) + y′(t), this applying for all choices of a, x(t), x′(t). The latter

9



2. Background

condition is often referred to as the superposition principle.

Time invariance means that whether we apply an input to the system now or T seconds
from now, the output will be identical except for a time delay of T seconds. That is, if the
output due to input x(t) is y(t), then the output due to input x(t − T) is y(t − T). Hence, the
system is time invariant because the output does not depend on the particular time the input
is applied.

The equations relating the current state of a system to its most recent input and past states
are called the state equations, and the equations expressing the values of the output variables
in terms of the state variables and inputs are called the output equations. he state equations
and output equations for a linear time invariant system can be expressed using coefficient
matrices: A, B, C, and D, such that A ∈ RN×N , B ∈ RN×L, C ∈ RM×N , D ∈ RM×L, where N, L
and M are the dimensions of the vectors describing the state, input and output, respectively.

Figure 2.1.: A typical State Space Model of a LTI system

The most general state-space representation of a linear system with p inputs, q outputs and
n state variables is written in the following form:

x′(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)
where:

x(·) is called the "state vector", x(t) ∈ Rn;
y(·) is called the "output vector", y(t) ∈ Rq;
u(·) is called the "input vector", u(t) ∈ Rp;
A(·) is called the "state (or system) matrix", dim[A(·)] = n × n;
B(·) is called the "input matrix", dim[B(·)] = n × p;
C(·) is called the "output matrix", dim[C(·)] = q × n;
D(·) is called the "feedthrough (or feedforward) matrix", dim[D(·)] = q × p;
x′(t) := d

dt x(t)

10



2. Background

2.6. Control and Observability

Control is the ability to manipulate the behavior of a system in order to achieve desired
performance or specifications. In control theory, the goal is often to design a controller that
can adjust the system’s inputs to produce a desired output or to regulate the system in the
presence of disturbances.

The state controllability condition implies that it is possible – by admissible inputs – to
steer the states from any initial value to any final value within some finite time window. A
continuous time-invariant linear state-space model is controllable if and only if

rank
[
B AB A2B · · · An−1B

]
= n,

where rank is the number of linearly independent rows in a matrix, and where n is the
number of state variables.

Observability is the ability to reconstruct the internal state of a system from its outputs. In
other words, it is the ability to determine the state of the system by observing its outputs over
time. It can be defined as a measure for how well internal states of a system can be inferred
by knowledge of its external outputs.

A continuous time-invariant linear state-space model is observable if and only if

rank


C

CA
...

CAn−1

 = n

The observability and controllability of a system are mathematical duals (i.e., as controlla-
bility provides that an input is available that brings any initial state to any desired final state,
observability provides that knowing an output trajectory provides enough information to
predict the initial state of the system).

2.7. Transfer Functions

The transfer function of a Linear Time-Invariant (LTI) system is a mathematical representation
that describes the relationship between the system’s input and output in the frequency
domain. It is a fundamental concept in control theory and signal processing.

For a single-input, single-output (SISO) LTI system, the transfer function H(s) is defined as
the ratio of the Laplace transform of the system’s output Y(s) to the Laplace transform of the
system’s input U(s) under zero initial conditions:

H(s) =
Y(s)
U(s)

11



2. Background

Here, s is the complex frequency variable, and Y(s) and U(s) are the Laplace transforms of
the output and input, respectively.

The transfer function is typically expressed as a rational function in s:

H(s) =
N(s)
D(s)

where N(s) and D(s) are polynomials in s, and the degree of D(s) is greater than or equal
to the degree of N(s).

The coefficients of the transfer function are determined by the system’s parameters and
dynamics. For a system described by linear differential equations, the transfer function
provides a concise representation of its behavior in the frequency domain.

The transfer function is a powerful tool for analyzing and designing control systems.
It allows engineers to study the system’s response to different frequencies and design
controllers based on desired performance specifications. The transfer function is also useful
for stability analysis, frequency response analysis, and the design of filters in signal processing
applications.

Let’s consider the LTI system described above with the following state space representation:

x′ = Ax + Bu

y = Cx + Du

Let L denote the Laplace transform operator.
Laplace Transform of State Equation:

L{ẋ} = L{Ax + Bu}
sX(s)− x(0) = AX(s) + BU(s)

(sI − A)X(s) = x(0) + BU(s)

X(s) = (sI − A)−1x(0) + (sI − A)−1BU(s)

Substituting into Output Equation:

y = CX

Y(s) = CX(s) + DU(s)

Substituting the expression for X(s) from the state equation:

Y(s) = C(sI − A)−1x(0) + C(sI − A)−1BU(s) + DU(s)

Transfer Function:

H(s) =
Y(s)
U(s)

= C(sI − A)−1B + D

So, the transfer function of the LTI system described by ẋ = Ax + Bu and y = Cx + Du is
given by:

H(s) = C(sI − A)−1B + D

12
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2.8. Ordinary Differential Equations (ODEs)

A differential equation is an equation for an unknown function that contains not only
the function but also its derivatives. In general, the unknown function may depend on
several variables and the equation may include various partial derivatives. The subset of all
differential equations for such a function of just a single real variable are called ordinary
differential equations — shortly ODE. A most general ODE has the form:

F(x, y, y′, . . . , y(n)) = 0

where F is a given function of n + 2 variables and y = y(x) is an unknown function of a
real variable x. The maximal order n of the derivative y(n) in the equation above is called the
order of the ODE

Solving ODEs numerically is the common approach to exploring the behavior of dynamical
systems and often the simplest one to solve - so simple, in fact, that sometimes you may find
a closed form for the solution to the equations, but this is not always the case. Numerical
methods, such as Euler’s method or Runge-Kutta methods, enable the approximation of
solutions, facilitating the study of systems that may not have analytical solutions.

Numerical methods for solving first-order IVPs often fall into one of two large categories:
[22] linear multistep methods, or Runge–Kutta methods. A further division can be realized
by dividing methods into those that are explicit and those that are implicit. For example,
implicit linear multistep methods include Adams-Moulton methods, and backward differ-
entiation methods (BDF), whereas implicit Runge–Kutta methods [23] include diagonally
implicit Runge–Kutta (DIRK) [24], singly diagonally implicit Runge–Kutta (SDIRK)[25], and
Gauss–Radau [26] (based on Gaussian quadrature [27]) numerical methods. Explicit ex-
amples from the linear multistep family include the Adams–Bashforth methods, and any
Runge–Kutta method with a lower diagonal Butcher tableau is explicit. A loose rule of thumb
dictates that stiff differential equations require the use of implicit schemes, whereas non-stiff
problems can be solved more efficiently with explicit schemes.

Forward Euler Method:

The Forward Euler method is a simple and explicit approach. It approximates the derivative
at each time step using the slope at the current point. The update step is given by:

yn+1 = yn + h · f (tn, yn)

where h is the step size, tn is the current time, yn is the current approximation, and f (tn, yn)

is the derivative function.

Forward Euler is computationally efficient but can suffer from stability issues. It is known
to amplify high-frequency components and may lead to numerical instability in stiff systems.
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Backward Euler Method:

The Backward Euler method is implicit, requiring the solution of nonlinear equations at each
time step. The update step is given by:

yn+1 = yn + h · f (tn+1, yn+1)

Backward Euler is unconditionally stable for linear problems but may lack accuracy for stiff
systems. The implicit nature allows for larger time steps in comparison to Forward Euler, but
each step involves solving nonlinear equations, which can be computationally demanding.

Trapezoidal Method:

The Trapezoidal method is a compromise between the explicit Forward Euler and implicit
Backward Euler. It averages the slopes at the current and next points. The update step is
given by:

yn+1 = yn +
h
2
· [ f (tn, yn) + f (tn+1, yn+1)]

Trapezoidal method is conditionally stable for linear problems and offers better accuracy
than Forward Euler. It strikes a balance between stability and accuracy but still may struggle
with stiffness. The implicit nature adds computational cost but is less than fully implicit
methods like Backward Euler.

Comparing the different methods:

1. Accuracy:

• Forward Euler: First-order accuracy.

• Backward Euler: First-order accuracy.

• Trapezoidal: Second-order accuracy.

2. Stability:

• Forward Euler: Conditionally stable; may be unstable for stiff problems.

• Backward Euler: Unconditionally stable for linear problems.

• Trapezoidal: Conditionally stable; better than Forward Euler.

3. Computational Cost:

• Forward Euler: Low.

• Backward Euler: Moderate due to solving nonlinear equations.

• Trapezoidal: Moderate; less than fully implicit methods.

4. Handling Stiffness:

14
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• Forward Euler: Prone to instability in stiff systems.

• Backward Euler: Handles stiffness better than Forward Euler.

• Trapezoidal: Moderate performance in stiff systems.

15



3. Dynamic Neural Networks

3.1. Dynamic Neural Networks Formalism

The key idea of Dynamic neural networks (DNNs) is to represent the action of neurons
by ordinary differential equations, instead of the generally used static activation functions
like ReLU or tanh. For our use case, we use a DNN to represent a system of nonlinear
differential equations whose parameters are to be tuned. DNNs are incredibly well-suited for
representing such dynamical systems because instead of only using a traditional nonlinear
function of the net input, each neuron also involves a linear differential equation with two
internal state variables. These state variables are themselves dependent nonlinearly on the net
input. On top of this, the net input itself already includes time derivatives of the outputs from
the preceding layers. All in all, this enables each neuron to act like a second-order band-pass
filter, making them very powerful building blocks for modelling.

Thus [1] motivates the use of second-order ODE as a building block of dynamic neural
networks for simulating electronic circuits. We adopt the same framework in our approach.
In particular, we solve the following ODE to compute the state of neuron i denoted by ξi,
when applied to the input si :

τ2,iξ
′′
i + τ1,iξ

′
i + ξi = F (si)

To be able to predict the topology of the DNN, we choose F(si) to be si.

F(si) = si

The term si (net input to the neuron) contains the following information from the previous
layers:

si =
[

wξ̃

]
i

[wu]i

] [ ξ̃i
u

]
+

[
vξ̃

]
i

[vu′ ]i

] [ ξ̃ ′i
u′

]
− θi

In the above term, W contains the static weights corresponding to state and the input terms.
V consists of the dynamic weights which are multiplied with first order time derivatives of
the state and the input terms. The θ term denotes the bias. Both the τ terms in ODE facilitate
time-integration, thereby time-averaging the input signal and enabling the DNN to produce a
non-instantaneous response.
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3.2. Transformation of the state-space model

In this thesis, we restrict ourselves to LTI systems that can be reduced to the form:

x
′
(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

Here, x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input vector and y(t) ∈ Rl is the
corresponding output vector. The matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n and D ∈ Rl×n are
the system matrices, more specifically, A being the state matrix, B being the input matrix,
C being the output matrix and D being the feedforward matrix. In case this reduced order
representation is not available, we first use subspace identification algorithms like MOESP to
identify the reduced order LTI system from the input-output data.

For simplicity, we assume the Initial Value Problem to be x(0) = 0 and x
′
(0) = 0 to simplify

the mapping from the state-space matrices to the dynamic neural network parameters. We
achieve this by translating the input and output vectors appropriately. The modified input
and output vectors are as follows:

û(t) = u(t)− u(0)

ŷ(t) = y(t)− {C[
∫ t

0
eA(t−µ) dµ]Bu(0) + Du(0)}

Using the translated input and output vectors, our updated state space model is:

x
′
(t) = Ax(t) + Bû(t)

ŷ(t) = Cx(t) + Dû(t)

As a next step, we pre-process the system described by the equations above into a suitable
form. The purpose of the proposed transformation is to decouple the state equation as much
as possible and to promote sparsity in the connections of the resulting DNN. Moreover, this
also facilitates parallelism to some extent, during the forward and backward pass across the
hidden layers, while training the DNNs.

The pre-processing pipeline consists of three main steps:

3.2.1. Block Upper Triangulation using Real Schur Decomposition

We start with the block upper triangulation of the state matrix A using the real Schur
decomposition:

QT AQ = R

,
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where Q ∈ Rn×n is an orthogonal matrix and R ∈ Rn×n is a block upper triangular matrix.

R =


R11 R12 · · · R1q

R22 · · · R2q
. . .

...
Rqq


The diagonal block Rjj ∈ R1 if the eigenvalue of Rjj is real. However, Rjj ∈ R2×2 if the

corresponding complex eigenvalues constitute a conjugate pair.

3.2.2. Block Diagonalization using Bartels-Stewart algorithm

In numerical linear algebra, the Bartels–Stewart algorithm [28] is used to numerically solve
the Sylvester matrix equation AX − XB = C. In the next step, we will use Bartels-Stewart
algorithm to block diagonalize matrix R. In order to do that, we first need to regroup R into
blocks such that the diagonal blocks R∼

jj have disjoint spectra. With the proposed regrouping
strategy, if the eigenvalues lying in the resulting diagonal block R∼

jj are real with algebraic
multiplicity k, then, R∼

jj is upper triangular.

R∼
jj ∈ Rk×k =



λj ∗ · · · · · · ∗
0 λj ∗ · · · ∗

0 0
. . . ∗

...
...

... 0
. . . ∗

0 0 · · · 0 λj


However, if the eigenvalues in the diagonal block R∼

jj are complex conjugate pairs with
algebraic multiplicity k, then R∼

jj has a sparsity pattern:

R∼
jj ∈ Rk×k =



∗ ∗ ∗ ∗ · · · · · · ∗ ∗
∗ ∗ ∗ ∗ · · · · · · ∗ ∗
0 0 ∗ ∗ · · · · · · ∗ ∗
0 0 ∗ ∗ · · · · · · ∗ ∗
...

... 0 0
. . . ∗ ∗

...
... 0 0

. . . ∗ ∗
...

...
...

... 0 0 ∗ ∗
0 0 0 0 0 0 ∗ ∗


Now we introduce another similarity transformation given by:

Y−1RY = G

This block diagonalizes R using the Bartels-Stewart algorithm such that R∼
ij for i ̸= j. The

diagonal blocks of R i = j are not affected by this transformation. Thus, G looks like:
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G =


R11 0 0 0
0 R22 0 0

0 0
. . .

...
0 0 0 Rqq


3.2.3. Producing zeros in suitable diagonal entries

Next, we need to transform the first-order ODEs of the LTI systems into second order ODEs
represented by the dynamic neural network. For diagonal blocks of G having real eigenvalues,
no further transformation is needed. However, we need a transformation for the diagonal
blocks having complex eigenvalues.

We first consider R∼
jj ∈ R(2×2) has complex eigen values (λj, λ̄j) with algebraic multiplicity

1.

R∼
jj =

[
α β

γ δ

]
In order to represent two first-order equations (from the transformed state-space model) by

one second-order equation represented by the neural network, we define Mjj such that:

Mjj =

[
0 δ−1

1 β−1

]
This implies:

(Mjj)
−1R∼

jj (Mjj) =

[
0 (βγ − αδ)/βδ

βδ α + δ

]
We can then generalize this for the case when R∼

jj has complex eigenvalues (λj, λ̄j) with
algebraic multiplicity k. Decomposing R∼

jj into 2 × 2 blocks rij , we get,

R∼
jj =


r11 r12 r13 · · · r1k
0 r22 r23 · · · r2k
0 0 r33 · · · r3k
...

...
. . .

...
0 0 · · · 0 rkk


We define transformations M1, M2, ...Mk corresponding to each diagonal block rjj to produce

zeros in the required positions such that

Mjj ∈ R2k×2k = diag
[
M1 M2 · · · Mk

]
The final transformation is expressed as:
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(Mjj)
−1R∼

jj (Mjj) =


M−1

1 r11M1 M−1
1 r12M2 M−1

1 r13M3 · · · M−1
1 r1k Mk

0 M−1
2 r22M2 M−1

2 r23M3 · · · M−1
2 r2k Mk

0 0 M−1
3 r33M3 · · · M−1

3 r3k Mk
...

...
. . .

...
0 0 · · · 0 M−1

k rkk Mk


Note that all the 2 × 2 diagonal entries M−1

j rjj Mj are now in the required form
[

0 ∗
∗ ∗

]

3.2.4. Piecing together all the transformations

After applying all three similarity transformations sequentially, we get the final transformed
state matrix A∼:

A∼ = (QYM)−1A(QYM)

We now define the coordinate transformation for the state vector as:

x(t) = (QYM)ξ(t)

Substituting the transformations in the state equation, we get:

ξ
′
(t) =


A∼

11
A∼

22
. . .

A∼
qq




Ξ1

Ξ2
...

Xiq

+ (QYM)−1Bû(t)

Similarly, the transformed output equation in the new co-ordinate system is:

ŷ(t) = C(QYM)ξ(t) + Dû(t)

3.3. Mapping from state space matrices to DNN parameters

Based on the transformations derived in the previous section, we then exploit the block-
diagonal structure of the state matrix A. This facilitates deriving a mapping from the state
equation for ξ

′
(t) given above to the parameters of the hidden layer of the DNN. By the term

mapping, we essentially aim to determine:
1. the number of neurons,
2. the number of layers, and
3. how the neurons must be connected to each other.

Block-diagonalization of the state matrix Ã ensures that the states in different blocks are
independent. In other words, one can decouple the state equation into q blocks of equations.
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This makes it possible to derive a mapping for each block of state equations and construct the
DNN architecture one block at a time.

For example, consider the case when the system matrix Ã has two diagonal blocks with
disjoint spectra. Let the first diagonal block have eigenvalue λ1 ∈ R or

(
λ1, λ1

)
∈ C with

algebraic multiplicity k. Moreover, let the second diagonal block have eigenvalue λ2 ∈ R or(
λ2, λ2

)
∈ C with algebraic multiplicity 1 . The figure 3.1 demonstrates the DNN architecture

that emerges out of the mapping process of DNN corresponding to the given system having
two blocks with real/complex eigenvalues having algebraic multiplicities k and 1 respectively.

Figure 3.1.: Dynamic Neural Network : Architecture

3.4. The Dataset

For the purpose of demonstrating the training of DNNs, and subsequently benchmarking the
performance, we consider three different LTI systems that can be reduced to the form:

x
′
(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

Here, x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input vector and y(t) ∈ Rl is the
corresponding output vector. The matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n and D ∈ Rl×n are
the system matrices, more specifically, A being the state matrix, B being the input matrix, C
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being the output matrix and D being the feedforward matrix.

Dataset A

This is a 2 × 2 LTI system with the system matrices being as follows:

A =

[
a b
0 a

]
,

B =

[
1 0
0 1

]
,

C =

[
1 0
0 1

]
, and

D =

[
0 0
0 0

]

Here, A ∈ R2×2 is a upper-triangular matrix with real and repeating diagonal element
a. On giving a sinusoidal signal as an input u(t) and then simulating the system using
scipy.signal.lsim, we get an output response as shown in figure 4.8

Figure 3.2.: Output Response for the 2x2 LTI system

Dataset B

This is a 4 × 4 LTI system with the system matrices being as follows:

A =


a b c d
0 a e f
0 0 a g
0 0 0 a

,
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B =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,

C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,

D =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

,

Here, A ∈ R4×4 is a upper-triangular matrix with real and repeating diagonal element
a. On giving a sinusoidal signal as an input u(t) and then simulating the system using
scipy.signal.lsim, we get an output response as shown in figure 3.3

Figure 3.3.: Output Response for the 4x4 LTI system

Dataset C

This is a 16 × 16 LTI system with the system matrices being as follows:
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A =



a b c d · · · · · · e f
0 a g h · · · · · · i j
0 0 a k · · · · · · l m
0 0 0 a · · · · · · n o
...

... 0 0
. . . p q

...
... 0 0

. . . r s
...

...
...

... 0 0 a t
0 0 0 0 0 0 0 a


,

B = C =



1 0 0 0 · · · · · · 0 0
0 1 0 0 · · · · · · 0 0
0 0 1 0 · · · · · · 0 0
0 0 0 0 · · · · · · 0 0
...

... 0 0
. . . 0 0

...
... 0 0

. . . 0 0
...

...
...

... 0 0 1 0
0 0 0 0 0 0 0 1


, and

D =



0 0 0 0 · · · · · · 0 0
0 0 0 0 · · · · · · 0 0
0 0 0 0 · · · · · · 0 0
0 0 0 0 · · · · · · 0 0
...

... 0 0
. . . 0 0

...
... 0 0

. . . 0 0
...

...
...

... 0 0 0 0
0 0 0 0 0 0 0 0


Here, A ∈ R16×16 is a upper-triangular matrix with real and repeating diagonal element

a. On giving a sinusoidal signal as an input u(t) and then simulating the system using
scipy.signal.lsim, we get an output response as shown in figure 4.12 and figure 3.5

3.5. The Forward Pass

We implement our forward pass in pytorch. We first start by implementing a custom neural
network class called DNN (Dynamic Neural Network) that inherits from torch.nn.Module.
This class will encapsulate the architecture of the DNN. In the constructor (init method
)of the DNN class, we define all the different trainable parameter tensors of our dynamic
neural network using PyTorch’s nnmodule. We also initialize each parameter tensor first
randomly from a uniform distribution, and then using xavier initialization. Next we override
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Figure 3.4.: System Response for the 16x16 system - I
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Figure 3.5.: System Response for the 16x16 system - II
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the f orward method of the nn.Module class. This method defines how the input data flows
through the layers of our network during a forward pass. Inside the f orward method, we
specify the operations and computations that transform the input data into the output. The
exact computation performed during the forward pass at each neuron is further explained in
detail below.

The differential equation for the output, or excitation, yik of one particular neuron i in layer
k > 0 (forward pass) is given by

τ2 (σ1,ik, σ2,ik)
d2yik

dt2 + τ1 (σ1,ik, σ2,ik)
dyik

dt
+ yik = F (sik, δik)

This equation can be rewritten into two first order differential equations by introducing an
auxiliary variable zik as in

[
F (sik, δik) = yik + τ1,ik

dyik
dt + τ2,ik

dzik
dt

zik = dyik
dt

We then apply the Backward Euler integration method, according to the substitution scheme

f (x, ẋ, t) = 0 → f
(

ξ1x + ξ2x′,
x − x′

h
, t
)
= 0

where values at previous time points in the discretized expressions are denoted by accents
( ’ ). Consequently, a set of implicit nonlinear differential — or differential-algebraic equations
for variables in the vector x is replaced by a set of implicit nonlinear algebraic equations
from which the unknown new x at a new time point t = t′ + h with h > 0 has to be solved
for a (known) previous x′ at time t′. Different values for the parameters ξ1 and ξ2 allow for
the selection of a particular integration scheme. The Forward Euler method is obtained for
ξ1 = 0, ξ2 = 1, the Backward Euler method for ξ1 = 1, ξ2 = 0, the trapezoidal integration
method for ξ1 = ξ2 = 1

2 and the second order Adams-Bashforth method for ξ1 = 3
2 , ξ2 = − 1

2 .

Both the Backward Euler integration method and the trapezoidal integration method are
numerically very stable—A-stable—methods [29]. The local truncation error of the trapezoidal
method is O(h3), with h the size of the time step, instead of the O(h2) local truncation error
of the Backward Euler integration method. [30]
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Integration Method ξ1 ξ2

Forward Euler Method 0 1
Backward Euler Method 1 0
Trapezoidal Method 1/2 1/2
Adams-Bashforth method 3/2 -1/2

Table 3.1.: Choices of different Integration schemes

This gives the algebraic equations:

 τ2,ik
zik−z′ik

h = ξ1 (F (sik, δik)− yik − τ1,ikzik)
+ξ2

(
F

(
s′ik, δik

)
− y′ik − τ1,ikz′ik

)
yik−y′ik

h = ξ1zik + ξ2z′ik

Now, due to the particular form of the differential equations, we can solve the equations
for yik and zik to obtain the behaviour as a function of time, and we find for layer k > 0

[yik =
{

ξ2
1F (sik, δik) + ξ1ξ2F

(
s′ik, δik

)
+

[
−ξ1ξ2 + ξ1

τ1,ik

h
+

τ2,ik

h2

]
y′ik +

ξ1 + ξ2

h
τ2,ikz′ik

}
/
{

ξ2
1 + ξ1

τ1,ik

h
+

τ2,ik

h2

}
zik =

yik − y′ik
hξ1

− ξ2

ξ1
z′ik

Particularly, in our implementation, we use the Backward Euler integration method. Hence,
we further substitute ξ1 = 1, ξ2 = 0 which further simplifies the expression for which the sik
are obtained from:

sik =
Nk−1

∑
j=1

wijkyj,k−1 − θik +
Nk−1

∑
j=1

vijkzj,k−1

The steady state behaviour of one particular neuron i in layer k > 0 at time t = 0 is given by:
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 sik|t=0 = ∑
Nk−1
j=1 wijkyj,k−1 − θik

yik|t=0 = F (sik, δik)
zik|t=0 = 0

The output of the forward pass is then used to compute the loss during training and
eventually to simulate the output of the system during inference.

3.6. Understanding Backpropagation Through Time (BPTT)

In the context of DNNs, which are designed to capture temporal dependencies in data,
Backpropagation Through Time (BPTT) extends the traditional backpropagation algorithm to
handle sequences of variable lengths. The core idea behind BPTT is to unfold the temporal
structure of the DNN over a fixed number of time steps and treat it as a feedforward neural
network with shared weights across time. The BPTT algorithm involves iterating through
the unfolded network for each time step, computing the forward pass, calculating the loss,
and then performing backpropagation to update the model parameters. The gradients are
accumulated across all time steps, reflecting the impact of each time step on the final loss. The
unfolded structure allows the model to capture dependencies across time, enabling effective
learning of sequential patterns.

Despite its effectiveness, BPTT is known to suffer from vanishing or exploding gradient
problems, particularly in long sequences [31]. In practice, networks can have a large number
of time steps which makes BPTT computationally expensive. Truncated BPTT is a common
approach where the backward pass is limited to a fixed number of time steps. This not only
saves computational time but also helps mitigate the vanishing/exploding gradient problem.

We will use Truncated Backpropagation Through Time (TBPTT) algorithm for training
our DNN. TBPTT addresses the computational challenges associated with BPTT, particularly
when dealing with long sequences. Instead of performing backpropagation through the entire
sequence, TBPTT truncates the sequence into shorter segments, allowing for more efficient
training. The algorithm proceeds as follows:

1. Initialization: Initialize the model parameters, including weights and biases. We tested
two different initializations: random initialization from a uniform distribution and
xavier initialization.

2. Sequence Truncation: Choose a fixed number of time steps, known as the truncation
length. This length determines the segment of the sequence over which backpropagation
will be performed.
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3. Forward Pass: For each truncated segment, perform a forward pass through the DNN.
Calculate the hidden states and predictions for each time step within the truncated
segment.

4. Loss Computation: Calculate the loss at each time step within the truncated segment
by comparing the predicted output with the actual target.

5. Backpropagation within Truncated Segment: Perform backpropagation within the
truncated segment to compute the gradients of the loss with respect to the model
parameters. This involves computing the gradients through the chain rule, considering
the contributions from each time step within the truncated segment.

6. Parameter Update: Adam (short for Adaptive Moment Estimation) is our choice of
optimizer as it combines ideas from two other optimization algorithms, RMSprop and
Momentum, and introduces adaptive learning rates.

7. Repeat for the Entire Sequence: Repeat the process by moving the truncation window
along the sequence. Each truncated segment contributes to the overall learning process,
and the model parameters are updated based on the accumulated gradients from all
segments.

8. Repeat for Multiple Epochs: Continue this process for a fixed number of iterations
(epochs) or until convergence is achieved. Truncating the backpropagation sequence
provides computational efficiency while still allowing the model to capture dependencies
within each segment.

TBPTT strikes a balance between computational efficiency and modeling effectiveness, mak-
ing it more feasible for training on large datasets with extended temporal dependencies. The
choice of truncation length is a hyperparameter that can be tuned based on the characteristics
of the data and the available computational resources.

3.7. Implementation

The core of this thesis work is the Pytorch implementation of the Dynamic Neural Network
formalism. More specifically, we implement the Forward Pass, Backward Pass, Training Loop
and a couple of ODE solvers to generate the ground truth required for training loop.

Here, we initialize the weights of the neural network randomly from a uniform distribution.

def random_initialize(self):
# Weights/Trainable parameters
self.tau_1 = nn.Parameter(torch.rand_like(-self.evals_inv)).to(self.device)
self.tau_2 = nn.Parameter(torch.rand(self.d_A)).to(self.device)
self.W_u_hat = None #(If B =!0)
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self.W_xi_tilde = nn.Parameter(torch.rand(int((self.d_A - 1) * self.d_A / 2)))
self.W_u_hat = nn.Parameter(torch.rand_like(self.ssm_B)).to(self.device)

Next, we implement the differential equations described earlier to be able to perform the
forward pass. Each neuron solves a linear differential equation, driven by a nonlinear function
of the net input. The net input itself has time derivatives of outputs from previous layers.
Different kinds of dynamic behaviour may arise from an individual neuron, depending on
the values of its parameters.

def forward_pass(self, timesteps, a_1, a_2, h, inputs):
u_hat = torch.from_numpy(inputs)

h_inv = 1./h
# Initialize the state and state-derivative set to zero
sol_dnn = torch.zeros((len(timesteps),self.d_A, 2)) # timesteps, neurons, states

per neuron
y_dnn = torch.zeros((len(timesteps), self.ssm.dim[2])) # timesteps, neurons,

states per neuron

for t in range(1, len(timesteps)):
f_old = 0
for i in reversed(range(self.d_A)): # Last row first

# Solve the ODE and store the state for each time step and update it for
next time-steps

# compute the forcing term
f_old = self.compute_f_new(i, u_hat[t-1], sol_dnn, t-1)

sol_dnn[t, i, 0] = (h / self.tau_1[i]) * (f_old - sol_dnn[t-1, i, 0]) +
sol_dnn[t-1, i, 0]

# Update state and it’s derivative after each time-step
self.xi = sol_dnn[t, :, 0]
#self.xi_prime = sol_dnn[t, :, 1]
y_dnn[t, :] = self.compute_output()

return y_dnn, sol_dnn # tensor with dimensions timesteps * n * 2

Next, we implement the Truncated Backpropagation Through Time (TBPTT) algorithm. We
backpropagate the gradients backwards not just all the through layers and but also through
time. We don’t perform backpropagation through the entire sequence of data, but through
truncated sequences of shorter segments, allowing for more efficient training.

model = DyNN.dynn_blocks[0]
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writer = SummaryWriter()

num_epochs = 2000

trajectory_tau1_1 = np.zeros(num_epochs)
trajectory_wxitilde = np.zeros(num_epochs)
trajectory_wuhat = np.zeros(num_epochs)
sequence_length = 10

with torch.autograd.set_detect_anomaly(False):
# Construct our loss function and an Optimizer. The call to model.parameters()
# in the Adam constructor will contain the learnable parameters (defined
# with torch.nn.Parameter) which are members of the model.

criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-2)
for e in range(num_epochs):

for sequence in input[0].length():
# Forward pass: Compute predicted y by passing x to the model

y_pred = DyNN.predict(inputs[0][sequence:sequence+seq_length],
seq_length, dt)

# Compute and print loss
loss = criterion(y_pred.float(),

torch.from_numpy(y_gt_trapezoidal).float())

print(e, loss.item())

# Zero gradients, perform a backward pass, and update the weights.
optimizer.zero_grad()

loss.backward(retain_graph=True)

trajectory_tau1_1[e] = model.tau_1[0]
trajectory_wxitilde[e] = model.W_xi_tilde
trajectory_wuhat[e] = model.W_u hat

optimizer.step()

sequence = sequence + seq_length
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3.8. The Loss landscape

In the realm of deep learning, there exist two fundamental questions: 1.) What attributes
make models trainable? And 2.) What factors contribute to models’ ability to generalize? The
solutions to these queries are intricately tied to the characteristics and fundamental geometry
of the loss landscape, a quality inherently dictated by the computational architecture of the
model. Neural network training relies on our ability to find “good” minimizers of highly
non-convex loss functions. It is well-known that certain network architecture designs produce
loss functions that train easier, and well-chosen training parameters (batch size, learning
rate, optimizer) produce minimizers that generalize better. However, the reasons for these
differences, and their effects on the underlying loss landscape, are not well understood.

Visualizations have the potential to help us answer several important questions about why
neural networks work. In particular, why are we able to minimize highly non-convex neural
loss functions? To answer this questions, we use high-resolution visualizations to provide
an empirical characterization of neural loss functions, and explore how the non-convex
structure of neural loss functions relates to their trainability, and how the geometry of neural
minimizers (i.e., their sharpness/flatness, and their surrounding landscape), affects their
generalization properties.

To do this in a meaningful way, we take Dataset B as a sample scenario and then we use
visualizations to explore sharpness/flatness of the loss landscape, as well as the effect of
network architecture choices on the training efficiency. Our goal is to understand how loss
function geometry affects the learning process in DNNs. Using this dataset, once we map
our state space matrices to the DNN parameters using the mapping described previously, we
have three trainable parameters - namely τ1, wû and wξ̃ . We take each of these parameters
- two at a time - and plot a high resolution loss landscape. These landscapes are shown in
figures 4.4, 4.5 and 4.6.

As we can visually infer after seeing the landscapes, the loss landscape of our DNNs gets
very flat near the minima, which implies that the loss function has a shallow slope or low
gradient across a significant portion of the parameter space around the minima. Interestingly,
away from the minima, the landscape is still relatively steep. This characteristic has important
implications for the training and optimization of the DNNs.

The landscape suggests that the optimization algorithm may converge slowly during
training, which was confirmed later during implementation. With a shallow slope, the up-
dates to the model parameters are small, making it challenging for the optimizer to reach
a minimum efficiently. Also, since the region around the minima is extremely shallow, we
experienced that the optimizer almost always reached an approximate solution somewhere in
the region, and found it very difficult to get it to the theoretical global minima. We will visu-
alize the performance of the optimizer by analyzing the training trajectories in the next section.
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Figure 3.6.: The Loss Landscape - wξ̃ vs. τ1

Figure 3.7.: The Loss Landscape - wû vs. τ1
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Figure 3.8.: The Loss Landscape - wû vs. wξ̃
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4. Results and Discussion

4.1. Performance on different Datasets

For the purpose of demonstrating their efficiency, and to try and benchmark their performance,
we trained different DNNs on the three datasets A, B and C as described in the previous
section.

Dataset A : 2x2 system with algebraic multiplicity 2

DNN - Mapping

In this dataset, the matrices A ∈ R2×2, B ∈ R2×2, C ∈ R2×2 and D ∈ R2×2 are the system
matrices, more specifically, A being the state matrix, B being the input matrix, C being the
output matrix and D being the feedforward matrix. Here, the system matrix A has real and
repeating eigen values with an algebraic multiplicity of 2. The matrices B and C are Identity
matrices and D is a zero or a null matrix. As usual, we give a sinusoidal input pulse u(t) to
the system.

For this configuration, we derive the mapping of the DNN using the steps mentioned
earlier to get the DNN architecture as described in figure 4.1. In this architecture, we have
a single hidden dynamic block with two neurons. The connections between them are as
depicted. Each neuron emulates a ODE solver to solve the system equations by means of
dynamic connections and trainable parameters τ1, τ2, wû and wξ̃ .

DNN - Output

As visible from the curve fits in the figure 4.2, the model performs really well and gives us
MSE values very close to machine precision when compared with a Backward Euler solver,
and reasonably good values when compared to the python routine signal.lsim. This is due
to our implementation choice of using parameters emulating the Backward Euler solver in
our DNN. For the sake of completeness, after playing around with the hyperparameters and
performing high level hyperparameter tuning, we got the best results when using a ADAM
(Adaptive Moment Estimation) optimizer with a learning rate between 1e − 3 and 1e − 2. In
ADAM, instead of adapting learning rates based on the average first moment as in RMSP
(Root Mean Squared Propagation), we make use of the average of the second moments of the
gradients. This algorithm calculates the exponential moving average of gradients and square
gradients and the parameters of β1 and β2 are used to control the decay rates of these moving
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Figure 4.1.: The DNN architecture - 2x2 LTI system

averages. Adam is a combination of two gradient descent methods, Momentum, and RMSP.

Figure 4.2.: Model Response for the 2x2 LTI system

Loss curve

Learning curves are a widely used diagnostic tool in machine learning for algorithms that
learn from a training dataset incrementally. In our study, we plot the learning curves by
evaluating our model at every time step, calculating and tracking the value of the loss function
(Mean Squared Error in our case). The loss curve helps us in monitoring our training process
and also helps us in diagnosing our model performance and gives us a pretty solid intuition
on how to further improve it. In figure 4.3, we can see the training curve for the 2 × 2 system.

As seen from the curve in figure 4.3, we observe that the training was smooth, which
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Figure 4.3.: The Loss curve - 2x2 LTI system

indicates that there were no significant problems with the training and the model is behaving
as expected as it is steadily improving over time.

Learning trajectories

Deep neural networks exhibit the capability to tackle highly intricate tasks that surpass the
capacities of classical algorithms. However, the intricacies of the training process, specifically
the trajectory stochastic optimizers traverse through the parameter space—from an initially
randomized network to a proficiently trained one—remain inadequately comprehended.
While convex optimization benefits from a robust theoretical understanding of the paths
taken by various optimization methods and their convergence rates to the global optimum
[32], the loss functions associated with deep neural networks are notably non-convex. Al-
though there exist theoretical findings, such as insights into the nature of obstacles within the
loss landscape [33], a comprehensive understanding is still lacking.

We have already seen how the loss landscape looks in the previous section, we will now
see how our optimizer finds its way from the initialization to the minima in the figures 4.4,
4.5 and 4.6.

In each of these trajectories, we can see that the ADAM optimizer slowly but steadily finds
its way to the shallow region surrounding the minima. Admittedly, the converged values
of all the trainable parameters are not close to their theoretical equivalents, but this is more
about the flatness of the landscape and there existing a relatively large solution space.
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Figure 4.4.: The Loss Trajectory (ADAM) - wξ̃ vs. τ1

Figure 4.5.: The Loss Trajectory (ADAM) - wû vs. τ1
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Figure 4.6.: The Loss Trajectory (ADAM) - wû vs. wξ̃

Dataset B : 4x4 system with algebraic multiplicity 4

DNN - Mapping

In this dataset, the matrices A ∈ R4×4, B ∈ R4×4, C ∈ R4×4 and D ∈ R4×4 are the system
matrices, more specifically, A being the state matrix, B being the input matrix, C being the
output matrix and D being the feedforward matrix. Here, the system matrix A has real and
repeating eigen values with an algebraic multiplicity of 4. The matrices B and C are Identity
matrices and D is a zero or a null matrix. As usual, we give a sinusoidal input pulse u(t) to
the system.

For this configuration, we derive the mapping of the DNN using the steps mentioned
earlier to get the DNN architecture as described in figure 4.7. In this architecture, we have
a single hidden dynamic block with four neurons. The connections between them are as
depicted. Each neuron emulates a ODE solver to solve the system equations by means of
dynamic connections and trainable parameters τ1, τ2, wû and wξ̃ .

DNN - Output

As visible from the curve fits in the figure 4.2, the model again performs really well and gives
us MSE values very close to machine precision when compared with a Backward Euler solver,
and reasonably good values when compared to the python routine signal.lsim. For the sake
of completeness, after playing around with the hyperparameters and performing high level
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Figure 4.7.: The DNN architecture - 4x4 LTI system

hyperparameter tuning, we got the best results when using a ADAM (Adaptive Moment
Estimation) optimizer with a learning rate between 1e − 3 and 1e − 2.

Loss curve

We again plot the loss curve for this example just like we did for the 2 × 2 system. As seen
from the curve in figure 4.9, we observe that the training was smooth, which indicates that
there were no significant problems with the training and the model is behaving as expected as
it is steadily improving over time. An interesting thing to note here is that because the training
is slightly slower than the simpler 2 × 2 case, it takes more number of epochs for the curve
to converge. Also, the curve converges at a higher loss value as compared to the 2× 2 example.

Dataset C : 16x16 system with algebraic multiplicity 16

DNN - Mapping

In this dataset, the matrices A ∈ R16×16, B ∈ R16×16, C ∈ R16×16 and D ∈ R16×16 are the
system matrices, more specifically, A being the state matrix, B being the input matrix, C being
the output matrix and D being the feedforward matrix. Here, the system matrix A has real
and repeating eigen values with an algebraic multiplicity of 16. The matrices B and C are
Identity matrices and D is a zero or a null matrix. As usual, we give a sinusoidal input pulse
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Figure 4.8.: Model Response for the 4x4 LTI system

Figure 4.9.: The Loss curve - 4x4 LTI system
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u(t) to the system.

In this dataset, the matrices A ∈ R16×16, B ∈ R16×16, C ∈ R16×16 and D ∈ R16×16 are the
system matrices. Here, the system matrix A has real and repeating eigen values with an
algebraic multiplicity of 16. The matrices B and C are Identity matrices and D is a zero or a
null matrix. We give a sinusoidal input pulse u(t) to the system.

For this configuration, we derive the mapping of the DNN using the steps mentioned
earlier to get the DNN architecture as described in figure 4.10. In this architecture, we have
a single hidden dynamic block with four neurons. The connections between them are as
depicted. Each neuron emulates a ODE solver to solve the system equations by means of
dynamic connections and trainable parameters τ1, τ2, wû and wξ̃ .

Figure 4.10.: The DNN architecture - 16x16 LTI system

DNN - Output

As visible from the curve fits in the figure 4.2, the model performance is not as good as the
previous two cases, giving us MSE values in the range of 1e − 4. For the sake of completeness,
after playing around with the hyperparameters and performing high level hyperparameter
tuning, we again got the best results when using a ADAM (Adaptive Moment Estimation)
optimizer with a learning rate between 1e − 3 and 1e − 2.
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Figure 4.11.: Model Response for the 16x16 system - I
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Figure 4.12.: Model Response for the 16x16 system - II
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Loss curve

We repeat the step of plotting the loss curve for this example just like we did earlier. As
seen from the curve in figure 4.13, we observe that the training was smooth, which again
indicates that there were no significant problems with the training and the model is behaving
as expected as it is steadily improving over time. The overall loss value at which the curve
converges to a much higher value as expected.

Figure 4.13.: The Loss curve - 16x16 LTI system

Cascaded DNNs

DNN - Mapping

In the next scenario, we assume that we have no prior knowledge of the topology of the DNN,
and hence we just naively connect individual dynamic blocks together as we would otherwise
conventionally do with Artificial Neural Networks. We use this architecture and train it on our
4x4 dataset. We cascade multiple 1 × 1 dynamic neuron blocks in multiple vertically stacked
hidden layers to achieve similar performance throughput as compared to a regular DNN, if
not better. We can cascade arbitrary number of such vertically stacked dynamic blocks, each
made up of a single 1x1 neuron. The choice on the numbers of hidden layers here is arbitrary
because it is not possible to isolate a "best" size and depth for a network before continuing to
tune other parameters in isolation as the size and depth of the network can be thought of as
hyperparameters themselves. We will train our cascaded DNN on dataset B. The system ma-
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trices of B will first be decoupled and mapped to a number of individual 1× 1 dynamic blocks.

For this configuration, we cascade three vertically stacked dynamic blocks as described in
figure 4.14. In each vertically stacked layer, we have a four different dynamic blocks. The
connections between them are as depicted. Each neuron emulates a ODE solver to solve the
system equations by means of dynamic connections and trainable parameters τ1, τ2, wû and
wξ̃ .

Figure 4.14.: Cascaded DNN - Concept Diagram

DNN - Output

Dataset B is a 4 × 4 dynamical system. The cascaded DNN, in theory, has more number of
trainable units, which may or may not translate to better expressiveness. As visible from the
curve fits in the figures 4.15 and 4.16, the model performance is not as good as the uncascaded
DNNs, giving us MSE values in the range of 1e − 2. For the sake of completeness, after
playing around with the hyperparameters and performing high level hyperparameter tuning,
we again got the best results when using a ADAM (Adaptive Moment Estimation) optimizer
with a learning rate between 5e − 3 and 1e − 2.

Loss curve

The loss curve for the cascaded DNN is as shown in figure 4.17. We observe that the model
performance was not as good as the regular DNNs, but there were no apparent indications
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Figure 4.15.: Cascaded DNN - Model Output - I

Figure 4.16.: Cascaded DNN - Model Output - II
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LTI system Learning Rate Loss at convergence
Dataset A - 2x2 system (1e-3,1e-2) 1e-8
Dataset B - 4x4 system (1e-3,1e-2) 1e-7
Dataset C - 16x16 system (1e-3,1e-2) 1e-4
Dataset B - Cascaded DNN (1e-3,1e-2) 1e-2

Table 4.1.: Summary of Results

on why would this be the case. Our intuition is that the 1 × 1 individual dynamic blocks
in each layer are less expressive as compared to the 4 × 4 dynamic blocks. Moreover, more
number of neurons overall mean more trainable parameters, and hence a more complex loss
landscape, which could very well be difficult to navigate. The overall loss value at which the
curve converges to a much higher value than expected.

Figure 4.17.: Cascaded DNN - Loss Curve
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5. Conclusion and Outlook

The theory of Neural Networks and its extensions have shown great promise when it comes
to modelling complex dynamical systems. In this thesis, we extended this research direction
by implementing Dynamic Neural Networks - DNNs - in which the behaviour of individual
neurons is characterized by a suitably designed differential equation. This differential equa-
tion represents a non-linearity, for which appropriate choices had to be made to allow for the
accurate and efficient representation of the system in question. Several relevant examples of
dynamic behaviour have also been demonstrated to fit the mathematical structure of DNNs,
although not all kinds of dynamic behaviour are considered representable at this point in time.

By visualizing and studying the loss landscapes of these systems, we were able to intuitively
come up with initialization schemes for various parameters of the DNNs so as to reduce
the chance of our DNN optimizer getting stuck in a local minimum. For stability reasons
it is assumed that two of the trainable parameters τ1 and τ2 are greater than zero. Further,
our implementation assumes again that the eigenvalues of A are real and have algebraic
multiplicity of greater than 1. When mapping the system matrices onto the parameters of the
network, it is desirable that stability is maintained.

A significant portion of this thesis was the Pytorch implementation of the DNN formalism.
This implementation will serve as the basis for future research and work in this direction.
Several design choices were made while writing the code from a software engineering point
of view to ensure modularity and reproducability. The code was well documented for future
researchers to continue working on other extensions of DNN. On top of using the inbuilt
python routine scipy.signal.lsim, we also implemented two other ODE solvers - Backward
Euler and the Trapezoidal solver to better align with the DNN implementation.

Key takeaways from this study:

1. DNNs already show a lot of promise when it comes to representing and emulating LTI
systems. The domain knowledge of state space representation of LTI systems can be
exploited to initialize the weights of DNNs.

2. Not only that, but the mapping from the state space matrices to the parameters of the
DNN is very useful in that it gives us information about the topology of DNNs which
more or less eliminates the need for architecture search.

3. The standard backpropagation theory for static multidimensional behaviour in feedfor-
ward neural networks can been extended to include the learning of dynamic response
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in the time domain as is demonstrated by the implementation of Backpropagation
Through Time (BPTT)

4. Analyzing the loss landscape of some of these LTI systems gave us more insights on
why training a neural network to get to learn the representation is not particularly
easy. However, the shallow slopes around the region of theoretical global minima
does suggest that it should be possible to be able to arrive at an approximate solution.
Studying the loss surfaces of even higher dimensional systems could be potentially very
interesting.

5. Although the results don’t match the performance of regular standalone DNNs, cascad-
ing lower order DNNs together could potentially prove useful for certain scenarios.

In addition to this, there are a few different propositions on the future direction(s) of
research in this domain:

1. Implement the DNN formalism for systems where the state matrix A has complex eigen
values. This will involve extending the current implementation, which should be trivial,
but it couldn’t be done because of time constraints.

2. We currently only looked at equidistantly sampled datasets. It could be an interesting
exercise to be able to learn using non-equidistantly sampled datasets.

3. The convergence of the optimization scheme while training DNNs was observed to
be not particularly fast, especially considering that a few of the examples were very
simplified. A deeper insight into why is it slow and working on accelerating it would
be most valuable.

4. In spite of several reasons for caution, the general direction in Automatic Neural
Architecture Search as proposed in this thesis seems to have significant potential.
However, it must at the same time be emphasized that there may still be a long way to
go from encouraging preliminary results to practically useful results.
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A. General Addenda

A.1. Multivariable Subspace Identification: MOESP Algorithm

The Multi-Output Error State Parameter (MOESP) algorithm [34] is a powerful subspace
identification technique employed in the field of system identification and control. Designed
to address the challenges of estimating the state-space matrices of Linear Time-Invariant (LTI)
systems from input-output data, MOESP excels particularly in scenarios involving multiple
outputs. By leveraging concepts from subspace identification and employing Singular Value
Decomposition (SVD) on carefully constructed Hankel matrices [35] derived from collected
data, MOESP offers a robust and effective approach for extracting the underlying dynamics
of complex systems. This algorithm plays a pivotal role in fields where accurate modeling of
dynamical systems is crucial, providing valuable insights into the behavior and characteristics
of the underlying processes. Its versatility, especially in handling multivariate systems, has
contributed to its widespread use in diverse applications ranging from control systems to
signal processing.

Consider a Linear Time-Invariant (LTI) system described by the state-space equations:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

where:

x(t) is the state vector,

u(t) is the input vector,

y(t) is the output vector,

A is the state matrix,

B is the input matrix,

C is the output matrix, and

D is the direct transmission matrix.

The MOESP algorithm for identifying the system matrices involves the following steps:
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1. Data Collection:

Collect input-output data pairs (u(t), y(t)) for a given time duration.

2. Data Matrices:

Assemble the Hankel matrices:

Yp =


y(1) y(2) . . . y(p)
y(2) y(3) . . . y(p + 1)

...
...

. . .
...

y(N − p + 1) y(N − p + 2) . . . y(N)



Up =


u(1) u(2) . . . u(p)
u(2) u(3) . . . u(p + 1)

...
...

. . .
...

u(N − p + 1) u(N − p + 2) . . . u(N)


where p is the past window size, and N is the total number of samples.

3. SVD (Singular Value Decomposition):

Perform Singular Value Decomposition on the augmented matrix:[
Yp

Up

]
= ÛΣV̂T

where Û and V̂ are orthogonal matrices, and Σ is a diagonal matrix of singular values.

4. System Matrices:

Extract submatrices from Û, Σ, and V̂ to form matrices U1, U2, Y1, Y2, and Y3. Compute the
system matrices using the following relations:

A = U1Y+
1

B = U1Y+
2

C = Y+
3 UT

1

D = Y+
3 UT

2

where + denotes the pseudoinverse.
The resulting matrices A, B, C, and D are estimates of the state-space matrices for the given

LTI system.
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3.8. The Loss Landscape - wû vs. wξ̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1. The DNN architecture - 2x2 LTI system . . . . . . . . . . . . . . . . . . . . . . . 37
4.2. Model Response for the 2x2 LTI system . . . . . . . . . . . . . . . . . . . . . . . 37
4.3. The Loss curve - 2x2 LTI system . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4. The Loss Trajectory (ADAM) - wξ̃ vs. τ1 . . . . . . . . . . . . . . . . . . . . . . . 39
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