Deep learning and the Schrédinger equation
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In this paper, I report the work of [Mills et al. 2007] where they trained
a certain Deep Learning Network to predict the ground-state energy of
an electron in four different classes of electrostatic potentials confined in
two dimensions. On randomly generated potentials, for which there is no
analytical form for computing either the potential or the ground-state energy,
the model was able to predict the ground-state energy to within chemical
accuracy, with a median absolute error (MEA) of 1.49 mHa. I also briefly talk
about their investigation of the performance of the model in predicting other
fundamental quantities such as the kinetic energy and the first excited-state
energy.
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1 ERWIN SCHRODINGER

Erwin Schrodinger was a Nobel Prize-winning Austrian physicist
who developed a number of fundamental results in Quantum theory:
His equation provides an analytical way to calculate the wave func-
tion of a quantum system and describes how it changes dynamically
with time.

2 THE SCHRODINGER EQUATION

In Quantum Mechanics, wave function is defined as a variable quan-
tity that describes the wave characteristics of a particle. The value
of the wave function gives the likelihood of the particle to be at that
point in space and time.

Conceptually, the Schrédinger equation is the quantum counter-
part of what we know as Newton’s Second Law of Motion in the
realm of classical mechanics. Given a set of known initial conditions,
Newton’s second law makes a deterministic mathematical predic-
tion as to what path any given physical system will follow over
time. Equivalently, the Schrodinger equation gives the evolution of
a wave function over time.

The most general form of the Schrédinger equation is the time-
dependent variation, which gives a description of a quantum system
evolving over time:
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In Quantum Mechanics, the Hamiltonian of a system is an opera-
tor corresponding to the total energy of that system, including both
Kinetic Energy and Potential Energy.

Interestingly, the time-dependent Schrédinger equation described
above predicts that wave functions can form standing waves, called
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The original work was introduced by K. Mills, M. Spanner and I. Tamblyn in
2007 [Mills et al. 2007].

Fig. 1. Erwin Schrodinger, Source: Wikipedia Commons

stationary states. These stationary states can be described by a
simpler form of the Schrédinger equation:

H|¥) = E|¥)

Analytical solutions of this equation are known for very few sam-
ple model Hamiltonians including the simple harmonic oscillator,
the particle in a box, the dihydrogen cation, and the hydrogen atom.
It is typically not possible to solve the Schrédinger equation exactly
for situations of physical interest. Accordingly, approximate solu-
tions are obtained using techniques like variational methods and
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WKB approximation. It is also common to treat a problem of interest
as a small modification to a problem that can be solved exactly, a
method known as perturbation theory. [Press et al. 1990]

Even the helium atom - which contains just two electrons — has
defied all attempts at a fully analytical treatment till date.

3  MACHINE LEARNING AND PHYSICS

The term Machine Learning is new; the approach is not. Even before
the dawn of modern computing, we have been using various Ma-
chine Learning techniques (Pattern Matching, Grouping, Predicting,
fitting parameters within a model etc.) to solve complex models
and problems. In the field of Quantum mechanics, these approaches
have proven to be quite powerful, yielding models trained for spe-
cific atomic species or based upon hand-selected geometric features.
However, as is the case with most regular machine learning tasks,
feature selection is a significant limitation of such approaches, as
the outcomes depend upon the choice of input representation, and
even more so, on the inclusion of all relevant features.

To overcome this limitation, here, the authors propose a funda-
mentally different approach inspired by the successful application
of deep convolutional neural networks to problems in computer
vision and computational games. Rather than trying to seek an ap-
propriate input representation to capture all the relevant physical
attributes of a quantum system, they train a highly flexible neural
network on a considerable large training dataset. The intuition is
that after sufficient training, the network will learn not only the
features (in weight space) but also the mapping required to arrive
at those results. This approach does not depend on the appropriate
selection of input representations and features. This technique is
commonly referred to as “Featureless Learning”.

Developing a deep learning model involves both the design of the
network architecture and the acquisition of training data. The latter
is one of the most crucial aspects of training a machine learning
model, as it determines the transferability of the resulting model.

In previous work, a NN was shown to interpolate the mapping
of position to wavefunction for a specific electrostatic potential,
but the fit was not transferable, a limitation also present in other
applications of NNs to PDEs.

4 NUMERICAL SOLVER AND DATASET GENERATION

In the paper, the authors investigate four different classes of poten-
tials in two dimensions: Simple Harmonic Oscillators (SHO), Infinite
Wells (IW), Double-Well Inverted Gaussians (DIG), and Random Po-
tentials (RND). Each of these are essentially a grayscale image: a 2D
grid of floating-point numbers. The potentials are defined on a grid
from x, y = 20 to 20 a.u. on a 256 x 256 grid. They used a standard
finite-difference method to solve the eigenvalue problem:
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for each potential V. The potentials were generated with a dy-
namic range and length scale suitable to produce ground-state ener-
gies within a physically relevant range

4.1 Simple Harmonic Oscillator (SHO)

The harmonic oscillator that the authors refer to here is the quantum-
mechanical analog of the classical harmonic oscillator. Because
an arbitrary smooth potential can usually be approximated as a
harmonic potential at the vicinity of a stable equilibrium point, it is
one of the most important model systems in quantum mechanics.
Furthermore, it is one of the few quantum-mechanical systems for
which an exact, analytical solution is known.

The Simple Harmonic Oscillator (SHO) potentials were generated
with the scalar function:
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where kx, ky, cx, and cy were randomly generated.

Theoretically, the SHO forms the simplest case for a purpose-built
CNN as there is a closed form analytical solution to the problem
dependent on two simple parameters (kx and ky). These two param-
eters uniquely define the ground-state energy of a single electron.

4.2 Infinite Wells (IW)
The Infinite Well (IW) potentials were generated with the scalar
function:
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where 20.0 was used as “numerical infinity”. Just like the SHO,
the ground state energy here depends analytically only on the width
of the well in the two dimensions.

It is expected that both the SHO and the IW will serve as very
trivial cases for even a modest network architecture to be able to
accurately figure out the mapping between the potentials and the
different energies.

4.3 Double-Well Inverted Gaussians (DIG)

The double-well inverted Gaussian (DIG) potentials were generated
with the scalar function:
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where the parameters are randomly sampled from a uniform
distribution. The DIG dataset is reasonably more complex than
the SHO and IW in two respects: First, the potential depends on
significantly more parameters; Second, there is no known analytical
solution for a single electron in a potential well of this nature.

4.4 Random Potentials (RND)

The random potentials were generated through a lengthy process
motivated by three requirements: the potentials must (a) be random,
(b) be smooth, and (c) go to a maximum of 20.0 at the boundary.
The random dataset formed the most generalized case as there
was no closed-form equation to represent the potentials. The dataset



generation process is explained in some more detail in the original
paper.

5 CNN ARCHITECTURE

With the ultimate aim of better generalization and reproducibility,
the architecture of the neural network was designed to be as generic
as possible. They used a simple deep neural network architecture,
as shown in the figure above, composed of a number of repeating
units of convolutional layers. The sizes of all the layers were chosen
for a balance of execution speed and result accuracy.
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Fig. CNN Architecture

As shown in the figure, the convolutional layers are of two differ-
ent types: “Reducing” and “Non-Reducing”. The 7 Reducing layers
operate with filter (kernel) sizes of 3 x 3 pixels. Each reducing layer
operates with 64 filters and a stride of 2x2, effectively reducing the
image resolution by half at each step. Between each pair of these re-
ducing convolutional layers, there are “Non-Reducing” layers which
operate with 16 filters of size 4 x 4. These filters have unit stride, and
therefore preserve the resolution of the image. The purpose of these
layers is to add additional trainable parameters to the network.

All convolutional layers have ReLU activation. The final convolu-
tional layer is fed into a fully connected layer of width 1024, also
with ReLU activation. This layer feeds into a final fully-connected
layer with a single output. This output is then used to compute the
loss.

It is important to note here that as the simple harmonic oscillator
potentials have an analytic solution, they were used as reference
for validating the accuracy of the numerical solver.

6 IMPLEMENTATION AND RESULTS

For training, they used the AdaDelta optimization scheme with a
learning rate of 0.001 to minimize the loss function, continuously
monitoring its value as training proceeded. Interestingly, it was
observed that after 1000 epochs, the loss no longer decreased sig-
nificantly. They devised a custom TensorFlow implementation in
order to make use of 4 graphical processing units (GPUs) in parallel.
All training datasets consisted of 200,000 training examples and
training was run for 1000 epochs. All reported errors are based on
evaluating the trained model on validation datasets consisting of
50,000 potentials that were not accessible to the network during the
training process.
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Table 1. Key Observations

Potential MAE

SHO 1.51mHa
w 5.04mHa
DIG 2.70mHa
RND 1.49mHa

DIG on RND 2.94mHa
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Fig. Histograms of the true vs. predicted energies for each example
in the test set indicate the performance of the various models

The above figure shows the Histograms of the true vs. predicted
energies for each example in the test set indicating the performance
of each model. The insets show the distribution of error away from
the diagonal line representing perfect predictions.

= 12074) Random, (F) . 600 D) DIG, &1
T 1) 25
£ 100 500
&
£ 80
g 400

‘ 5
T 60 gl T Frror i)
8 300 ; 10 0 m8
T 40 pr i

P 2

e 200 JF

50 100 200 400 600
True energy (mHa) True energy (mHa)
Fig. Histograms of the true vs. predicted energies for the model
trained on the (a) kinetic energy, and (b) excited-state energy of the
double-well inverted Gaussian.

The above figure shows the Histograms of the true vs. predicted
energies for the model trained on the (a) kinetic energy, and (b)
excited-state energy of the double-well inverted Gaussian.

7 KEY OBSERVATIONS

The SHO, being one of the simplest potentials, performed extremely
well. The IW potentials performed notably poorer than the SHO
potentials, despite their similarity in being analytically dependent
upon two simple parameters. This is likely due to the sharp discon-
tinuity associated with the infinite well potentials, combined with
the sparsity of information present in the binary valued potentials.
The DIG and RND potentials performed moderately well. In case of
RND, since the loss did not completely converge after 1000 epochs,
additional 200,000 training samples were provided to the network
and it was allowed to train for 1000 more epochs. 1.49 mHa was the
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MEA after additional training To investigate the transferability of
the learnt model to another class of potentials, the model trained
on RND was able to predict the ground-state energy of the DIG
potentials within a reasonable MEA.

As indicated by the graphs, the model fails at very high energies.
However, this is an expected result given that the training set did
not have many examples in this particular energy band. The rea-
sonably good performance on DIG on RND dataset is not entirely
surprising; One possible explanation is that during the generation
of the random potentials, there’s an element of Gaussian blurring.
However, this moderate performance is still a testament to the gen-
eralizability of CNNs Since the ground-state and first excited-state
are both eigenvalues of the Hamiltonian, the authors were also able
to demonstrate the training of a seperate model on the expected
value of the kinetic energy. The trained model predicted the kinetic
energy value with a MAE of 2.98 mHa. While the spread of testing
examples in figure 4 above suggests the model performed more
poorly, the absolute error was still reasonably small. The model
was versatile enough to be able to predict the ground-state, first
excited-state and the kinetic energies separately. This, again, serves
as a testament to the power of CNNs.

8 CONCLUSION

The authors were aware of there being other supervised/unsupervised
Machine Learning approaches to solve the same problem, and were
glad to report that their CNN based approach performed reasonably
better than other existing known approaches. A detailed comparison
with Kernel Ridge Regression and Random Forests can be found in
the original paper. As the number of electrons in a system increases,
the computational complexity of both the analytical methods as
well as other ML models grow polynomially. CNNs exhibit no such
scaling. Although the focus here was on a particular type of problem,
namely an electron in a confining 2D potential well, the concepts
here are directly applicable to many problems in physics and en-
gineering. This experiment can also be considered as a successful
demonstration of the ability of NNs to learn how to approximate
the solutions to PDEs. A generalizable, scalable and transferable ap-
proach to solving PDEs would naturally impact many other verticals
of theoretical physics, chemistry and mathematics.

Thus, in conclusion, CNNs are one of the more promising can-
didates for application to electronic structure calculations as they
are inherently designed for data which has a spatial encoding of
information.

9 FUTURE SCOPE

One notable limitation of the author’s approach is that the efficient
training and evaluation of the CNN requires uniformity in the in-
put size. Future work can focus on an approach that would allow
transferability to variable input sizes. This approach to training
the CNN is not absolutely rotationally invariant. Recent proposals
to modify the network architecture itself to make it rotationally
invariant, without using an additional augmentation, are promising
[Dieleman et al. 2016].[Worrall et al. 2016] This exact approach to
solving PDEs rapidly and accurately can be used in other areas of
physics and engineering. To scale this implementation to support

multi-particle systems. As the number of electrons in a system in-
creases, the computational complexity of the analytical methods as
well as other ML models grow polynomially. CNNs exhibit no such
scaling. (Eg. Helium Atom)
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